
DEMONSTRATION OF BALLET: A FRAMEWORK FOR OPEN-SOURCE
COLLABORATIVE FEATURE ENGINEERING

Micah J. Smith 1 Kelvin Lu 1 Kalyan Veeramachaneni 1

ABSTRACT
Feature engineering is a critical part of end-to-end learning pipelines in many practical supervised learning
settings. While the most predictive features often build off of diverse domain expertise and human intuition, rarely
are more than a small handful of data scientists and researchers involved in this process. Ballet addresses this
problem by providing a framework for scaling feature engineering collaborations in an open-source setting. In our
approach, collaborators incrementally submit patches containing standalone feature definitions to a central source
code repository. Our framework provides functionality for composing the separate features into an executable
end-to-end pipeline, evaluating feature submissions in a streaming fashion, and automating project management
tasks for maintainers. In this demonstration, audience participants will collaborate in real-time in a feature
engineering task on a complex, real-world dataset.

1 INTRODUCTION

The open-source model for software development has led to
successful, large-scale collaborations in building software
frameworks, software systems, chess engines, scientific anal-
yses, and more. However, data science, and in particular,
predictive machine learning (ML) modeling, has not bene-
fited from this development paradigm. Predictive modeling
projects — where the output of the project is not a software
library but rather a trained model capable of serving pre-
dictions for new data instances — are rarely developed in
open-source, and when they are, they rarely have more than
a handful of collaborators.

Drawing inspiration from successful collaboration
paradigms in software engineering, we proposed a new
framework for large-scale data science collaborations
(Smith et al., 2020). Our approach is based on decomposing
the data science process into modular patches — standalone
units of contribution — that can then be intelligently
combined. Prospective contributors work in parallel to write
patches and submit them to an open-source repository. Our
software framework provides the underlying functionality
to merge high-quality contributions and compose the
accepted contributions into a single product.

We instantiated these ideas in Ballet1, a software framework
1Laboratory for Information and Decision Systems, Mas-

sachusetts Institute of Technology, Cambridge, Massachusetts,
USA. Correspondence to: Micah J. Smith <micahs@mit.edu>.

Proceedings of the 3 rd MLSys Conference, Austin, TX, USA,
2020. Copyright 2020 by the author(s).

1https://github.com/HDI-Project/ballet

for collaborative feature engineering on tabular data (Lu,
2019; Smith et al., 2018; 2020). Feature engineering is
the process of writing code to transform raw variables into
feature values that can be used as input to an ML model.
We start from the insight that feature engineering can be
represented as a dataflow graph over individual features. We
structure code that extracts a group of feature values as an
individual patch, calling these logical features. An example
logical feature written using our framework is shown in
Listing 1.

A potential project collaborator begins developing a new
feature (defining a Feature object) in their development
environment of choice. When they are satisfied with its
performance, they propose it for inclusion in the pipeline
using one of several provided interfaces. The most direct
approach is using the ballet CLI. The submitted features
are evaluated by a CI service in a specialized procedure that
checks the integrity of the project structure, conformance of
the proposed feature to the required feature interface, and
finally evaluates the ML performance of the feature using
a streaming feature acceptance algorithm. According to
this result, the submitted features are marked as accepted
or rejected. Accepted features are automatically merged to
the repository by ballet-bot, a GitHub app, which may
further automatically prune newly redundant features from
the source tree. The user can monitor the output of this
process. If their feature is accepted, they can move on to
their next idea; if rejected, they can review the diagnostic
information and try to improve their idea, or abandon it
entirely. This process is illustrated in Figure 1.

https://github.com/HDI-Project/ballet

Demonstration of Ballet: A Framework for Open-Source Collaborative Feature Engineering

Develop features
clone project
write feature

Evaluate features

1

2 3

4

5

CI

some-ballet-project

src/features/contrib

create
pull request

want to
improve model

trigger
build

prune
features

trigger
build

update
badge

accepted?tri
gg

er
 b

uil
d m

erge

Ballet bot
 build X
 streaming
feature pruning

Continuous metrics bot
 build X
 compute information, size

project structure check
feature API check
streaming feature acceptance Maintainer

Figure 1. The development lifecycle of a new feature, from pro-
posal to impact on the model.

2 DEMONSTRATION

In this demonstration, we will invite the audience to collab-
orate in real-time on a feature engineering task. We will
present a raw dataset that requires significant feature en-
gineering before a usable feature matrix can be input to
a learning algorithm. We will supply two separate prob-
lems: the first is a real-world house price prediction prob-
lem that is currently a live collaboration2 and the second is
the Fragile Families Challenge (Fragile Families Challenge)
dataset, predicting eviction incidence for disadvantaged chil-
dren given a complex survey dataset. If possible, we may
substitute an ongoing Kaggle challenge at the time of the
conference.

On individual provided laptops, audience members will be
invited to contribute a new feature to a live collaboration.
They will click a link to spin up a Binder notebook and
write a new feature for the problem (or copy a pre-written,
example feature for expediency), i.e. write Python code in
a notebook cell using our framework libraries to define a
single Feature object, as in Listings 1 and 2. They will
be able to submit their feature to the project using an in-
notebook interface that will extract the feature source code,
authenticate with GitHub, and submit a pull request to the
collaboration project under their account.

Separately, we will visualize the progress of the ongoing
collaboration in a simple dashboard, showing metrics such
as the number of features submitted/accepted/rejected, the
number of unique collaborators, the mutual information of
the extracted feature matrix with the target, and the perfor-
mance of a simple AutoML model trained on the extracted
feature matrix.

2https://github.com/HDI-Project/ballet-
predict-house-prices

from ballet import Feature
from ballet.eng import ConditionalTransformer
import numpy as np
from sklearn.impute import SimpleImputer

input = 'Lot Area'
transformer = [

ConditionalTransformer(
lambda ser: ser.skew() > 0.75,
lambda ser: np.log1p(ser)),

SimpleImputer(strategy='mean'),
]
name = 'Lot area unskewed'
feature = Feature(input=input,

transformer=transformer, name=name)↪→

Listing 1: An example of a user-submitted logical feature
in Ballet that conditionally unskews the “lot area” variable
by applying a log transformation only if skew is present in
the training data and then mean-imputing missing values.
This feature leverages the rich set of feature engineering
primitives provided in the ballet.eng library.

from ballet import Feature
from ballet.eng import NullFiller,

SimpleFunctionTransformer↪→
import numpy as np

def calc_garage_per_car(df):
return df["Garage Area"] / df["Garage Cars"]

input = ["Garage Area", "Garage Cars"]
transformer = [

SimpleFunctionTransformer(calc_garage_per_car),
NullFiller(isnull=np.isinf, replacement=0.0),
NullFiller(replacement=0.0),

]
name = "Garage area per car"
feature = Feature(input=input,

transformer=transformer, name=name)↪→

Listing 2: A user-submitted logical feature that calculates
the garage area per car and cleans infinite and missing values.

REFERENCES

Fragile Families Challenge. Fragile fami-
lies challenge, 2017. URL http://www.
fragilefamilieschallenge.org/.

Lu, K. Feature engineering and evaluation in lightweight
systems. M.eng. thesis, Massachusetts Institute of Tech-
nology, 2019.

Smith, M. J., Lu, K., and Veeramachaneni, K. Ballet: A
lightweight framework for open-source, collaborative fea-
ture engineering. In Workshop on Systems for ML at
NeuRIPS 2018, 2018.

Smith, M. J., Lu, K., and Veeramachaneni, K. Enabling
open-source collaborative data science development with
the ballet framework. Preprint, 2020.

https://github.com/HDI-Project/ballet-predict-house-prices
https://github.com/HDI-Project/ballet-predict-house-prices
http://www.fragilefamilieschallenge.org/
http://www.fragilefamilieschallenge.org/

